来源出版物:ENVIRONMENTAL MODELLING & SOFTWARE 卷:40 页:226-234 出版年:FEB 2013
摘要:The inference rules relating land characteristics to suitability class are crucial to the estimation of agricultural land suitability. In fuzzy logic modeling for agricultural land evaluation, the fuzzy inference, based on membership functions and rule aggregation, is constructed with predetermined evaluation criteria, including value ranges for fuzzy linguistic terms, and weights of land variables. However, most existing evaluation criteria systems are built on the basis of expert knowledge and can be highly subjective and contain uncertainty. This study integrates a genetic algorithm with a multi-criteria evaluation based fuzzy inference system (FIS) to construct a self-adapting system that calibrates its evaluation criteria by self-learning from land samples. In the proposed GA-optimized fuzzy inference model, the criteria for land evaluation are encoded into chromosomes, i.e., each chromosome represents a solution for the evaluation criteria system. The performance of the fuzzy inference system on a training set is used as the fitness of an individual chromosome. The genetic algorithm repeatedly modifies a population of chromosomes through selection, crossover and mutation. To reduce the violation of the constraints for chromosomes and the destruction of excellent genes, the subsets in chromosomes are used as the basic units in crossover and mutation. Some transformations are implemented in mutation to ensure that the new individuals are accorded with the constraints in the evaluation criteria. Three-fold cross-validation (3 CV) is employed to prevent overfitting and to evaluate the performance of the model. The optimized evaluation criteria are produced by decoding the final best chromosome. In the application of the model to the case study area, the accuracy of the evaluation criteria system for the training set increased from 72.08% to 93.34%. The results show that the model is both effective and robust.
文献类型: Article
语种:English
作者关键词:Agricultural land evaluation, Fuzzy inference system, Self-adapting, Genetic algorithm, Cross-validation
扩展关键词:SOIL SURVEY; GIS; MULTICRITERIA; SUITABILITY; LOGIC; SENSITIVITY; FRAMEWORK; SET
通讯作者地址:Jiao, LM ,Wuhan Univ, Sch Resource & Environm Sci, 129 Luoyu Rd, Wuhan 430079, Peoples R China.
电子邮件地址lmjiao027@163.com" data-ke-src=" /index.html?>lmjiao027@163.com" data-ke-src=" /index.html?>lmjiao027@163.com" target=_blanklmjiao027@163.com
地址:
[Liu, Yaolin; Jiao, Limin; Liu, Yanfang; He, Jianhua] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China.
[Liu, Yaolin; Jiao, Limin; Liu, Yanfang; He, Jianhua] Wuhan Univ, Minist Educ, Key Lab Geog Informat Syst, Wuhan 430079, Peoples R China.
研究方向:Computer Science; Engineering; Environmental Sciences & Ecology
ISSN:1364-8152
版权所有 © det365官网网站
地址:湖北省武汉市珞喻路129号 邮编:430079
电话:027-68778381,68778284,68778296 传真:027-68778893 邮箱:sres@whu.edu.cn