首页  >  科研动态  >  正文
科研动态
彭创、硕士生舒丹青的论文在 JOURNAL OF CO2 UTILIZATION 刊出
发布时间:2021-05-21 16:17:35     发布者:易真     浏览次数:

标题: A dual-cathode study on Ag-Cu sequential CO2 electroreduction towards hydrocarbons

作者: Shu, DQ (Shu, Danqing); Wang, M (Wang, Miao); Tian, FY (Tian, Fengyu); Zhang, HL (Zhang, Honglei); Peng, C (Peng, Chuang)

来源出版物: JOURNAL OF CO2 UTILIZATION : 45 文献号: 101444 DOI: 10.1016/j.jcou.2021.101444 出版年: MAR 2021

摘要: Electroreduction of CO2 to high value-added products such as hydrocarbons provides a promising way to create a carbon neutral circular economy. Copper (Cu) is the most effective metal catalyst with selectivity towards hydrocarbons but Cu catalyst alone generally produces hydrocarbons at low selectivity and yield. Operando surface enhanced infrared absorption spectroscopic (SEIRAS) analysis reveals that the low hydrocarbon yield is attributed to the poor ability of Cu to produce carbon monoxide (CO), which is a crucial intermediate for hydrocarbon formation. In the current study, an Ag-Cu dual-cathode CO2RR device is developed, which allows separate control of electrode potential. This dual-cathode cell shows increased hydrocarbon yield (83 % for methane and 106 % for ethylene) and a 200 mV lower onset potential for C2H4, compared to electrolysis with a single Cu cathode. The CO produced by the Ag cathode transfers to Cu and increase its CO coverage, facilitating methane formation as well as promoting C?C coupling to form ethylene. This study also reveals a mismatch of optimum electrode potential between Ag and Cu, which results in compromised performance of the two components in an Ag-Cu bimetallic electrocatalyst, but poses no challenge in the dual-cathode cell. To optimize the performance of the dual-cathode cell, we propose the use of a single-pass dual-gas-diffusion-cathode reactor with enhanced mass transfer for maximum hydrocarbon production. This work verifies that splitting the complex CO2RR process into two separate steps is a feasible method to improve the overall efficiency and rate of advanced products while reducing the energy input.

入藏号: WOS:000639292600008

语言: English

文献类型: Article

作者关键词: Dual-cathode cell; CO2 electroreduction; Hydrocarbons; Sequential catalysis; Reaction mechanism

地址: [Peng, Chuang] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

Wuhan Univ, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Peoples R China.

通讯作者地址: Peng, C (通讯作者)Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430072, Peoples R China.

电子邮件地址: Chuang.Peng@whu.edu.cn

影响因子:5.993

 

信息服务
学院网站教师登录 学院办公电话 学校信息门户登录

版权所有 © det365官网网站
地址:湖北省武汉市珞喻路129号 邮编:430079 
电话:027-68778381,68778284,68778296 传真:027-68778893    邮箱:sres@whu.edu.cn